БИОРАСПРЕДЕЛЕНИЕ ВЫСОКОПОРИСТЫХ ЧАСТИЦ КАРБОНАТА КАЛЬЦИЯ С ПОЛИМЕРНЫМИ ОБОЛОЧКАМИ В ЖИВОТНЫХ-

ОПУХОЛЕНОСИТЕЛЯХ

Т.Н. Паллаева¹, О.Ю. Грязнова²,
Д.А. Еуров³, Д.А Курдюков³,
В.К. Попова⁴, Е.В. Дмитриенко⁴,
Д.Б. Трушина^{1,5}

¹ ФНИЦ «Кристаллография и фотоника» РАН, Москва

² ИБХ РАН, Москва

3 ФТИ им. А.Ф. Иоффе, Санкт-Петербург

⁴ Институт химической биологии и фундаментальной медицины СО РАН, Новосибирск,

⁵ Первый МГМУ им. И.М. Сеченова, Москва

Trushina.d@mail.ru

18.10.2023

CaCO₃ applications

Metallurgy and building Manufacture of paints, paper, rubber, plastics, glass... Cosmetics, personal hygiene products Food industry

Water decontamination

Medicine

White color Anti-caking property Mechanical properties Physical stability Low cost

Biocompatibility Low toxicity Mild decomposition conditions Biodegradability Good absorption capacity Ability to control particle parameters

CaCO₃ Polymorphism

Metastable

Stable

Porous structure Developed surface ↓ Efficient loading of active molecules

Aragonite

Trigonal crystal system

Vaterite

Hexagonal crystal system

Orthorhombic crystal system

CaCO₃ particles: 3 polymorphs Calcite

60224 КАЛЬЦИТ СаСО₃ Calcite (исландский шпат) м-ние Адырбутское, Эрзинский р-н, Тува Шешулин Г.Н., 1958 Iceland spar, formerly known as Iceland Crystal, is a transparent variety of calcite (birefringence)

Fersman Mineralogical Museum RAS, Moscow

CaCO₃ particles: 3 polymorphs Aragonite

Fersman Mineralogical Museum RAS, Moscow

CaCO₃ particles: 3 polymorphs Vaterite (1903) is less stable form of CaCO₃

Heinrich Vater

was a pioneer in the forest soil science, land evaluation, forest fertilization Saxifraga sempervivum, an alpine plant produces a greenish-white crust, which contains vaterite

Spicules from the simple sea creature Herdmania momus contain large single crystals of vaterite of higher quality than those in the synthetic vaterite used in previous structure determinations (ESRF)

Variety of vaterite morphologies

- Trushina D.B. et al. Calcium carbonate vaterite particles for drug delivery: Advances and challenges // Mater. Today Adv. 2022.
 Vol. 14, P. 100214
- Trushina D.B., Bukreeva T. V., Antipina M.N. Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles // Cryst. Growth Des. 2016. Vol. 16, № 3. P. 1311–1319
- Mikheev A. V et al. Hybrid Core–Shell Microparticles Based on Vaterite Polymorphs Assembled via Freezing-Induced Loading // *Cryst. Growth Des.* **2023**. Vol. 23, № 1. P. 96–103

Vaterite Size-controlled crystallization

 $CaCl_2 + Na_2CO_3 = CaCO_3 \downarrow + 2NaCl$

Concentration of reagents Temperature pH Presence of additives, co-solvents Volume ratio of reagents Mixing time and intensity Influence of external fields

Polymorph composition Size Form Porosity

The main objective

Crystallization of stable porous vaterite particles in a size-controlled manner

Focus on how to decrease the size

Micro-sized vaterite

Standard protocol allows vaterite with the size ranging from 4.5 μ m to 1.5 μ m

Influence of the concentration of reagents on the size

1 µm

• Trushina, D. B.; Bukreeva, T. V.; Antipina, M. N. Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles. *Cryst. Growth Des.* **2016**, *16* (3), 1311–1319.

Micro-sized vaterite

FIB (Ga ions) milling of a Pt-coated CaCO₃ particle

Micro-sized vaterite

3D reconstruction of vaterite particle structure according to SEM images

CaCO₃ Pores

Submicron-sized vaterite

Modified protocol allows vaterite with the size ranging from 0.3 µm to 1.7 µm Optimization of the reaction parameters: ✓Varying salts:co-solvent volume ratio (1:1 – 1:5) ✓Different T (25°C – 40°C)

 \checkmark Mixing time from 30s to 3h

ADDITIVE (co-solvent): ethylene glycol/ glycerol

- Trushina, D. B.; Bukreeva, T. V.; Antipina, M. N. Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles. *Cryst. Growth Des.* **2016**, *16* (3), 1311–1319.
- Trushina, D. B.; Sulyanov, S. N.; Bukreeva, T. V.; Kovalchuk, M. V. Size Control and Structure Features of Spherical Calcium Carbonate Particles. *Crystallogr. Reports* 2015, 60 (4), 570–577.

 T. N. Pallaeva, A. V. Mikheev, D. N. Khmelenin, D. A. Eurov, D. A. Kurdyukov, V. K. Popova, E. V. Dmitrienko, D. B. Trushina. High-capacity calcium carbonate particles as ph-sensitive containers for doxorubicin, Crystallogr. Reports. 2 (2023) 309–315

• T. N. Pallaeva, A. V. Mikheev, D. N. Khmelenin, D. A. Eurov, D. A. Kurdyukov, V. K. Popova, E. V. Dmitrienko, D. B. Trushina. High-capacity calcium carbonate particles as ph-sensitive containers for doxorubicin, Crystallogr. Reports. 2 (**2023**) 309–315

In vivo evaluation of 50/200/500nm CaCO₃ particles

Particle type	Blood half-life t _{1/2} , min
500 nm	1.6 ±0.7
500 nm/PEG	2.2±0.9
200 nm/PEG	9.2±4.7
50 nm/PEG	2.6±0.7

In vivo pharmacokinetic profiles of Cy7.5-labelled CaCO₃ in mice

In vivo evaluation of 50/200/500nm CaCO₃ particles

Study design

In vivo biodistribution of Cy7.5-labelled CaCO₃ in mice (IVIS Spectrum CT)

Результаты и Выводы

Для синтеза CaCO₃ использовали методику массовой кристаллизации в растворах, а также темплатный синтез. Оптимизация условий кристаллизации позволила получить частицы CaCO₃ с размерами в диапазоне от 500 до 50 нм.

Для частиц 500нм циркуляция увеличивается при пэгилировании: t_{1/2} увеличивается с 1.6±0.7 до 2.2±0.9 сек. Для частиц 200нм t_{1/2} 9.2±4.7 сек.

При внутривенном введении большинство субмикронных и наночастиц CaCO₃– 500нм/PEG, CaCO₃– 200нм/PEG и CaCO₃–50/PEG аккумулируются в печени, селезенке, почках. Частицы одинаково накапливаются в опухоли в пределах погрешности. Т. о. применения наночастиц и полимерного покрытия недостаточно, чтобы значительно улучшить доставку препаратов к опухолевым клеткам.

Acknowledgment

научный фонд

Работа поддержана грантом РНФ № 21-74-10058

- ФНИЦ «Кристаллография и фотоника» РАН, Сеченовский Университет, Москва
- ♦ ИБХ РАН, Москва
- ♦ ФТИ им. А.Ф. Иоффе, Санкт-Петербург
- Институт химической биологии и фундаментальной медицины СО РАН, Новосибирск

Trushina.d@mail.ru

Two main types of vaterite achitecture

Framboids (from fr. la framboise – raspberry)

All directions are equal, framboids are the result crystal growth *via* oriented attachment of primary grains (non-classical crystal growth)

Spherulites are characterized by a radial-radiant internal structure due to the peculiarities of crystal growth

7/15

S. Khoshkhoo, J. Anwar, Crystallization of Polymorphs: the effect of solvent, J. Phys. D: App. Phys. 26 (1993) B90-B93

R. Beck, J.-P. Andreassen, The onset of spherulitic growth in crystallization of calcium carbonate, J. Cryst. Growth 312 (2010) 2226–2238.

NUCLET FORMATION

Radius of spherical critical nucleus at given supersaturation

Rate of nucleation – the number of nuclei formed per unit time per unit volume

$$r_c = 2\gamma v/\mathbf{k}T\ln S$$

$$J = A \exp\left[-\frac{16\pi\gamma^3 v^2}{3\mathbf{k}^3 T^3 (\ln S)^2}\right]$$

* Girshick, Steven L.; Chiu, Chia-Pin //The Journal of Chemical Physics, 1990, 93, 2, 1273

Разнообразие предложенных структур ватерита

Science

Vaterite Crystals Contain Two Interspersed Crystal Structures Lee Kabalah-Amitai *et al. Science* **340**, 454 (2013); DOI: 10.1126/science.1232139

Чем больше первый индекс *h* рефлекса, тем уже пик, т.е. тем больше размер наночастиц в направлении параметра решётки *a*.

Исходная рентгенограмма и результат уточнения методом Ритфельда для одного из образцов карбоната кальция

Зависимость ПШПВ дифракционных максимумов от обратного межплоскостного расстояния (построение по Williamson-Hall) Каждый символ на гладкой линии (рассчитанной методом Ритфельда) означает ФУ (ПШПВ) для конкретного пика в модели Le Bail. Величины, обозначенные полыми квадратами, получены отдельно интерполяцией функцией pseudo-Voigt на линейном фоне.

Используя методику Вильямсона-Холла и соотношение Шеррера получены размеры нанокристаллитов (области когерентного рассеяния)значения длин главных осей эллипсоида $2r_a = 1000(90)$ Å и $2r_b \approx 2r_c = 500(50)$ Å. Cite this: CrystEngComm, 2012, 14, 44

www.rsc.org/crystengcomm

COMMUNICATION

A new structural model for disorder in vaterite from first-principles calculations

Raffaella Demichelis, *a Paolo Raiteri, Julian D. Galea and Roberto Dovesib

Received 31st July 2011, Accepted 13th October 2011 DOI: 10.1039/c1ce05976a

Reference	SG	а	b	С	
Meyer ¹¹	Pbnm	4.13	7.15	8.48	
McConnell ¹²	P6322	7.135	7.135	8.524	
Kahmi, ¹³ Sato and Matsuda ¹⁴	P6 ₃ /mmc	4.13	4.13	8.49	
Bradley <i>et al.</i> ¹⁵	$P6_{3}22$	7.135	7.135	8.524	
Meyer, ⁷ Gabrielli <i>et al.</i> ⁶	$P6_3/mmc^a$	7.15	7.15	16.96	
Dupont <i>et al.</i> ¹⁶	$P6_3/mmc^a$	7.169	7.169	16.98	
Le Bail <i>et al.</i> ⁹	Ama2	8.7422	7.1576	4.1265	
Medeiros <i>et al.</i> ¹⁷	Pbnm ^b	4.531	6.640	8.480	
Wang and Becker ¹⁸	$P6_{5}22^{b}$	7.290	7.290	25.302	

Table 1 Structures proposed for vaterite: space group (SG) and lattice parameters [Å]

J. Wang et al. / Journal of Crystal Growth 407 (2014) 78–86

Fig. 3. Structure of a snapshot from molecular dynamics simulation with the dashed lines highlighting the basic pseudocell and supercell. The structure is projected on (001) plane. The large balls are calcium atoms. The balls and sticks are carbonate groups.

Fig. 2. (a) Crystal structure of vaterite with disordered CO_3^{2-} group [16]. Each CO_3 has a one-third occupancy. Ca^{2+} ions form a bexagonal lattice. (b) and (c) Schematic view of Ca^{2+} lattice (shown as 2+ charge inside a circle) and CO_3^{2-} orientations. Thin dashed lines highlight the pseudo unit cells. Three possible orientations of CO_3 ions are shown in dashed and solid symbols. The configuration in (b) where the two neighboring CO_3 ions are pointing to the same edge of the prisms is less stable than the one in (c) where the two neighboring CO_3 ions are pointing to different edges because of electrostatic repulsion between the oxygen atoms of CO_3 in the former configuration.

Hg. 6. (a) An HRTEM image shows the threefold symmetry along [001]. (b) A fast Fourier transform corresponding to the image (a). Two sets of diffraction peaks present and were highlighted with small and larger circles, respectively. (c) The HRTEM image generated from the primary diffraction peaks in Fig. 4b. (d) The HRTEM image generated from the satellite diffraction peaks in Fig. 4b. (e) The HRTEM image of the highlighted region in Fig. 4c. (f) The HRTEM image of the highlighted region in Fig. 4d. The basic lattice and superlattice are highlighted in Figs. 4e, f.

