

Razuvaev Institute of Organometallic Chemistry of RAS

Lobachevsky State University of Nizhny Novgorod, Russia

Новые фотоактивные органические молекулы, содержащие биполярные D-π-A фрагменты, как уникальные неинвазивные сенсоры локальной вязкости и полярности

Nizhny Novgorod State Medical Academy, Russia

Imperial College, London, UK

Institute of Applied Physics of RAS

Cyanoaryl porphyrazines synthesis

R	Q-band, nm	IC₅₀ light, mol/l	IC₅₀ dark, mol/l	IC ₅₀ dark / IC ₅₀ light	R	Q-band, nm	IC₅₀ light, mol/l	IC₅₀ dark, mol/l	IC ₅₀ dark / IC ₅₀ light
	575	3.7·10 ⁻⁶	1.1·10 ⁻⁵	3.3	-	593	1.1·10 ⁻⁶	1.3·10 ⁻⁵	12
Me	580	3·10 ⁻⁶	1.4·10 ⁻⁵	4.7		593	2.7·10 ⁻⁶	3·10⁻⁵	11
) s	580	3.8·10 ⁻⁶	1.3·10 ⁻⁵	3.4		591	3.5·10 ⁻⁶	2.5·10 ⁻⁵	7
Ś	610	1.5·10 ⁻⁷	6.8·10 ⁻⁶	45	-√N< ^{Me} Me		4.6·10 ⁻⁶	8.5·10 ⁻⁵	18
	600	1.9.10-6	8.5·10 ⁻⁵	45		590	4·10 ⁻⁷	2.5·10 ⁻⁵	62.5
\bigcirc	594	4·10 ⁻⁷	2.3·10 ⁻⁵	57.5	Me-N	594	4.3·10 ⁻⁶	1.1.10-5	2.6
	592	1.4 10 ⁻⁷	9.5·10 ⁻⁶	68	Me ^N	580	2.8·10 ⁻⁷	3.7·10 ⁻⁵	132
$\langle \overleftrightarrow \rangle$	608, 580	1.1.10-6	2·10 ⁻⁴	182	F-	610	1.5·10 ⁻⁷	1·10 ⁻⁵	67
	630	1·10 ⁻⁶	1.5.10-4	150		585	2.2·10 ⁻⁶	8.2·10 ⁻⁵	37

The aromatic groups variation as the efficient tool for a fine tuning of the porphyrazine photophysical and cytoxic properties

R	Q-band, nm	IC₅₀ light, mol/l	IC₅₀ dark, mol/l	IC₅₀ dark / IC₅₀ light	R	Q-band, nm	IC₅₀ light, mol/l	IC₅₀ dark, mol/l	IC₅₀ dark / IC₅₀ light
-	579	8·10 ⁻⁷	6.9·10 ⁻⁶	8.6		595	1·10 ⁻⁶	4.5·10 ⁻⁵	45
F F F F	604	9·10 ⁻⁷	3.6·10 ⁻⁶	4		587	4.9·10 ⁻⁷	2.9·10 ⁻⁵	59.2
MeO	586	2.4·10 ⁻⁶	1.1·10 ⁻⁵	4.6		592	2.7·10 ⁻⁷	1·10 ⁻⁵	37
ОМе	576	1.3·10 ⁻⁶	2.1·10 ⁻⁵	16.2	-√	594	1.2·10 ⁻⁶	5.2·10 ⁻⁵	43
- OEt OMe	576	2.4·10 ⁻⁶	1.2·10 ⁻⁵	5	- O - F OMe	593	1.7·10 ⁻⁶	4.1·10 ⁻⁵	24.1
-{_}	580	2·10 ⁻⁶	1.1·10 ⁻⁵	5.5	- OEt	591	3.6·10 ⁻⁶	4.3·10 ⁻⁵	11.9
- OMe	579	2.5·10 ⁻⁶	2·10 ⁻⁵	8	O - Br	594	5.9·10 ⁻⁶	3.4·10 ⁻⁵	5.8
	577	8.8·10 ⁻⁷	6.6·10 ⁻⁶	7.5	- O OMe	596	8·10 ⁻⁶	1.9.10-4	23.8

Porphyrazines as photosensitizers for PDT in animal tumor model (mice Balb/c).

CT26 murine colon carcinoma cell line was used to obtain the tumor model. Irradiotion with a 640-nm LED light source, dose 150 J/cm2 (A)

В

B – animal tumor model before PDT with porphyrazine

С

C– animal tumor model in 8 days after PDT with porphyrazine

A histogram of growth dynamics of the tumour node volume *in vivo* in mouse models subjected to PDTtreatment in control and experimental groups

Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death

Effective prophylactic vaccines that activated anti-tumor immunity, significantly reduced the rate of tumor growth, prolonged mouse survival,

Turabanova VD, et al «Novel porphyrazine-based photodynamic anticancer therapy induces immunogenic cell death.» Sci Rep 2021 Mar 30;11(1):7205.

T.S.Redkin et al "Dendritic Cells Pulsed withTumor Lysates InducedTetracyanotetra(aryl)porphyrazines-Based Photodynamic Therapy Effectively Trigger Anti-Tumor Immunity in an OrthotopicMouse Glioma Model" **Pharmaceutics** 2023, 15, 2430. https://doi.org/10.3390/pharmaceutics15102430

CYANO-ARYL PORPHYRAZINES (pz) AS THE NEW FLUORESCENT MOLECULAR ROTORS

 $\log \phi = z + \alpha \log \eta$ $\log \tau = z + \alpha \log \eta$ **Főrster-Hoffman equations** drug sensor

Plot of the pz fluorescence lifetime (left y-axis) and intensity (right y-axis) versus solution viscosity. Left and right insets illustrate pz solution in a tube exhibiting faint (low viscosity media) and bright (high viscosity media) fluorescence upon the excitation in low- and high-viscosity microenvironments, respectively.

M. A. Izquierdo, A. Vy`sniauskas, S. A. Lermontova, I. S. Grigoryev, N. Y. Shilyagina, I. V. Balalaeva, Larisa G. Klapshina and M. K. Kuimova. Dual use of porphyrazines as sensitizers and viscosity markers in photodynamic therapy // J. Mater.Chem B, 2015, 3, 1089-1096]

Real time monitoring of PDT *in vitro* and *in vivo* with porphyrazine as photosensitizer and optical viscosity sensor

Plot of porphyrazine fluorescence lifetime (τ_1) VS observation time in normal tissue (green line) and tumor tissue (red line).

New pigments based on aromatic polycyclic hydrocarbons substituted with tricyanoethylene fragments

non-polar low viscosity solvent (toluene) (10⁻³ mol/L), $\lambda_{\text{excit}} = 350 \text{ nm}$ (on the right), $\lambda_{\text{excit}} = 400 \text{ nm}$ (on the left).

700

Template assembling of the new cyanoaryl porphyrazine framework based on PyrTCNE as the structural unite of a tetrapyrrople macrocycle

Absorption (a), fluorescence (b) spectra of Pyr_4CN_4Pz ($\lambda_{excit} = 580$ nm) in water (5 x 10⁻⁶ mol/L). Emission of Pyr_4CN_4Pz (10⁻⁶mol/L) in the mixtures of ethanol and glycerol (c).

IC₅₀ light =1.0x 10⁻⁶ mol/l IC₅₀ dark=1.5x10⁻⁴ mol/l IC₅₀ dark/ IC₅₀ light = 130

0

V

е

n

Jablonski diagram demonstrating proposed photophysical mechanism of DE for Pyr_4CN_4Pz and PerICNE in <u>a</u>non-polar low viscosity medium. GS –ground state, $\pi - \pi^*$ - high lying GS transition state. ICT – intramolecular charge transfer, TICT-twisted intramolecular charge transfer.

Fuorescence quantum yeald of Pyr_4CN_4Pz in the different solvents (η - viscosity, ε - dielectric constant LW-long wave, SW- short wave

Solvent	η (cP)	8	Φf		
			LW	SW	
Castor oil	1079	4.7	0.360	0.480	
CH₃Ph	0.59	2.4	0.066	0.129	
THF	0.55	7.5	0.030	0.168	
CH ₃ CN	0.37	37.0	0.002	0.043	
Water	1.00	80.0	0.007	0.398	

Confocal images of the intracellular spatial distribution of pz I (A) and pz III (B) in glioma GL261 cells. Pz I and pz III are localized predominantly in the Golgi apparatus and partially in the Figure 1. GL261 cells. Pz I and pz III are localized predominantly in the Golgi apparatus and partially in the ER after 4 h of incubation. Importantly, pz I and pz III were not detected in mitochondria, lysosomes, or nucleus.

Заключение

1. Открыта принципиальная возможность быстрой темплатной сборки порфиразинового макроцикла при комнатной температуре;

2. Полученные цианоарильные порфиразины демонстрируют:
(а) высокую эффективность в качестве фотосенсибилизаторов ФДТ и тригеров иммуногенного механизма смерти раковых клеток;
(б) сочетание возможностей эффективных терапевтических агентов с уникальными для тетрапиррольных макроциклов сенсорными способностями- высокой чувствительностью флуоресцентных свойств к локальной вязкости и полярности среды

3. Цианоарилпорфиразины как потенциальные неинвазивные флуоресцентные сенсоры представляют значительный интерес в широком диапазоне практических приложений от оптоэлектроники и фотоники до биомедицины и дианостикию

Потенциальное применение порфиразинов с D-*π*-А структурой обрамления макроцикла в

ACKNOWLEDGMENT

IOMC RAS

Svetlana Lermontova

Ilya Grigoriev

Nizhny Novgorod State University

Natalia Shilyagina

Irina Balalaeva

Imperial College London UK, Dr M.Kuimova group

Nizhny Novgorod State Medical Academy

Diana Yuzhakova

Elena Zagainova

Marina Shirmanova

Время-разрешенный имиджинг (FLIM) для pz в процессе ФДТ in vitro (А 431)

ti = 400 - 2500 [ps]

Время-разрешенный имиджинг (FLIM) для pz в процессе ФДТ in vitro (А 431)

para-fluorine phenyl pyrrole substituted Pz

до облучения

30 минут

45 минут

10 Дж/см²

5 минут

15 минут

О минут —— 5 минут —— 15 минут —— 30 минут —— 45 минут —1 минут

Исследование влияния центрального катиона металла с переменной валентностью (Fell) на фотофизические свойства цианоарил

порфиразинов

FepzBenzoThioph, 20 Дж/см

Таблица 1. Распределение **FepzBenzoThioph** в клетках A431 по времени жизни возбужденного состояния. Метод FLIM. Длина волны возбуждения 800 нм, диапазон регистрации сигнала 640–710 нм. Показаны изображения до и после облучения части области зрения в дозе 20 Дж/см², обозначенной пунктиром. Псевдоцветная палитра представлена в диапазоне от 400 до 1200 пс

Оценка темновой и световой (10 и 20 Дж/см2) токсичности металлокомплекса порфиразина - тетра(бензотиофен-2-ил)тетрацианопорфиразинат железа (FepzBenzoThioph).

	Значения	IC ₅₀ для	FepzBenz	oThioph
--	----------	----------------------	----------	---------

Число клеток в лунке	IC ₅₀ , М, темнота	IC ₅₀ , М, 10 Дж/см ²	IC ₅₀ , М, 20 Дж/см²	IC ₅₀ темнота/ IC ₅₀ 10Дж/см ²	IC ₅₀ темнота/ IC ₅₀ 20Дж/см ²
4000	~10-4	3.4*10-8	4.4*10-8	2941	2273