

Работа выполнена на базе НИИ ЭО и БМТ ФГБОУ ВО «ПИМУ» Минздрава РФ

РАЗРАБОТКА АЛГОРИТМА АНАЛИЗА ИЗОБРАЖЕНИЙ, ПОЛУЧЕННЫХ МЕТОДОМ FLIM

И.Д. Щечкин^{1,2}, С.А. Родимова¹, Н.В. Бобров³, А.М. Можеров^{1,2}, Д.С. Кузнецова^{1,2}

1 Научно-исследовательский институт экспериментальной онкологии и биомедицинских технологий, Приволжский исследовательский медицинский университет, пл. Минина и Пожарского, 10/1, г. Нижний Новгород, Россия; 2 Нижегородский национальный исследовательский государственный университет им. Н.И. Лобачевского, пр. Гагарина, 23, Нижний Новгород, Россия;

3 Приволжский областной медицинский центр, Россия, Нижневолжская наб., 2, Нижний Новгород, Россия.

Нижний Новгород 2023

Актуальность

FLIM

Примеры FLIM-изображений: 1 — ткань печени, 2 — дифференцирующиеся хондроциты.

Цель и задачи

Цель:

Разработка алгоритма на основе HC, способного определять характеристики флуоресценции ткани печени по FLIM изображениям.

Задачи:

- Моделирование регенерации печени у лабораторных животных;
- Проведение FLIM визуализации;
- Разработка алгоритма анализа FLIM изображений;
- Проведение анализа FLIM изображений.

Материалы и методы

Модельный объект

• 18 крыс самцов линии Wistar, весом в 300 – 400 грамм

Резекция печени (2 группы)

- 30% гепатэктомия
- 70% гепатэктомия

Лазерная сканирующая микроскопия

LSM 880 (Carl Zeiss, Германия) λ_{ex} = 720 нм

Детекторы:

стандартный НРМ-100-40: λ_{ex} = **450 - 490 нм**

Обработка и анализ результатов

SPCImage (Becker & Hickle GmbH, Германия) ImageJ (National Institutes of Health, США) Google Colaboratory (Google, США) RStudio (Posit, США)

Лазерный сканирующий микроскоп LSM 880 (Carl Zeiss, Германия).

Результаты: Unet++

Пример изображений для обучения с 3х канальной маской

Результаты: предсказания

Пример предсказания границ клеток

Значение для многокомпонентной функции потерь составило менее 0.6, Focal Loss составил 0.075, Dice Loss составил 0.22, при этом F1-метрика составила 0.77 и AUC составил 0.9

Результаты: instance сегментация

Пример сегментации

В качестве метода сегментации был выбран алгоритм Watershed.

Стадии обработки:

- отделить клети от не клеток (задача HC),
- всю массу клеток разделить на отдельные клетки (задача Watershed).

Результаты: обработка кривых затухания

изображения

аппроксимированная кривая затухания

$$f(x;h;\mu;\sigma;\tau) = \frac{h\sigma}{\tau} \sqrt{\frac{\pi}{2}} \exp\left(\frac{1}{2} \left(\frac{\sigma}{\tau}\right)^2 - \frac{x-\mu}{\tau}\right) \operatorname{erfc}\left(\frac{1}{\sqrt{2}} \left(\frac{\sigma}{\tau} - \frac{x-\mu}{\tau}\right)\right)$$

Экспоненциально модифицированная Гауссова функция

index	a1	t1	a2	t2	tau_mean	chi
4	72.57	0.52	27.43	2.84	1.16	0.71
41	70.76	0.51	29.24	2.80	1.18	0.47
9	70.71	0.51	29.29	2.72	1.16	1.34
6	70.69	0.52	29.31	2.80	1.19	1.25
38	70.66	0.51	29.34	2.77	1.17	0.32

$$a_n^{relative} = \frac{100 * a_n^{abs}}{\sum a_n^{abs}},$$
$$t_{mean} = \frac{\sum (t_n * a_n^{abs})}{\sum a_n^{abs}}$$

 $t_n = \frac{1}{\lambda_n} = \tau_n,$ $a_n^{absolute} = \frac{h_n}{t},$

Пример таблицы с рассчитанными параметрами затухания для одного изображения, X² < 2

Таким образом, был разработан алгоритм, способный определять границы клеток с высокой точностью, выделять их на FLIM-изображении и рассчитывать соответствующие им параметры флуоресценции: времена жизни компонент и их вклады.

Разработанный алгоритм, в дальнейшем, позволит проводить обработку больших объемов накопленных данных и экспрессанализ интраоперационных FLIM-изображений.

Спасибо за внимание

Работа выполнена при поддержке гранта РНФ № 19-15-00263.